Analytical modeling of quantization effects in surrounding-gate MOSFETs

Author:

Palanichamy Vimala,Balamurugan N.B.

Abstract

Purpose – The purpose of this paper is to present an analytical model and simulation for cylindrical gate all around MOSFTEs including quantum effects. Design/methodology/approach – To incorporating the impact of quantum effects, the authors have used variational method for solving the Poisson and Schrodinger equations. The accuracy of the results obtained using this model is verified by comparing them with simulation results. Findings – This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge centroid, threshold voltage, inversion charge, gate capacitance and drain current. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different dimensions and bias voltages. Practical implications – Simulation based on the compact physical models reduces the cost of developing a sophisticated fabrication technology and shortens the time-to-market. They may also be utilized to explore innovative device structures. Originality/value – This paper presents, for the first time, a compact quantum analytical model for cylindrical surrounding gate MOSFETs which predicts the device characteristics reasonably well over the entire range of device operation (above threshold as well as sub-threshold region).

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Analysis of Dual Material Double Gate Tunnel-Field Effect Transistor (DMDG-TFET) with Gate Oxide Stack;2023 3rd International Conference on Intelligent Technologies (CONIT);2023-06-23

2. Efficiency Analysis of Cylindrical CNT MOSFET;2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS);2023-04-19

3. A fractional-order equivalent model for characterizing the interelectrode capacitance of MOSFETs;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2022-03-24

4. Quantum Modelling of Nanoscale Silicon Gate-All-Around Field Effect Transistor;Journal of Nano Research;2020-11

5. Characteristics Improvement of Silicon Nanowire Field Effect Transistor by using High-K Oxide Engineering;2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT);2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3