Dynamic propagation of tensile and shear fractures induced by impact load in rock based on the dual bilinear cohesive zone model

Author:

Wang YongliangORCID,Zhao Yongcai,Zhang Xin

Abstract

PurposeThe purpose of this study is to simulate the tensile and shear types of fractures using the mixed fracture criteria considering the energy evolution based on the dual bilinear cohesive zone model and investigate the dynamic propagation of tensile and shear fractures induced by an impact load in rock. The propagation of tension and shear at different scales induced by the impact load is also an important aspect of this study.Design/methodology/approachIn this study, based on the well-developed dual bilinear cohesive zone model and combined finite element-discrete element method, the dynamic propagation of tensile and shear fractures induced by the impact load in rock is investigated. Some key technologies, such as the governing partial differential equations, fracture criteria, numerical discretisation and detection and separation, are introduced to form the global algorithm and procedure. By comparing with the tensile and shear fractures induced by the impact load in rock disc in typical experiments, the effectiveness and reliability of the proposed method are well verified.FindingsThe dynamic propagation of tensile and shear fractures in the laboratory- and engineering-scale rock disc and rock strata are derived. The influence of mesh sensitivity, impact load velocities and load positions are investigated. The larger load velocities may induce larger fracture width and entire failure. When the impact load is applied near the left support constraint boundary, concentrated shear fractures appear around the loading region, as well as induced shear fracture band, which may induce local instability. The proposed method shows good applicability in studying the propagation of tensile and shear fractures under impact loads.Originality/valueThe proposed method can identify fracture propagation via the stress and energy evolution of rock masses under the impact load, which has potential to be extended into the investigation of the mixed fractures and disturbance of in-situ stresses during dynamic strata mining in deep energy development.

Publisher

Emerald

Reference38 articles.

1. A numerical investigation on the performance of hydraulic fracturing in naturally fractured gas reservoirs based on stimulated rock volume;Journal of Petroleum Exploration and Production Technology,2020

2. Experimental hydraulic fracture propagation in a multi-fractured medium,2000

3. Experimental study on hydraulic fracturing of soft rocks: influence of fluid rheology and confining stress;Journal of Petroleum Science and Engineering,2006

4. A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework;Computer Methods in Applied Mechanics and Engineering,2014

5. Sustained acoustic emissions following tensile crack propagation in a crystalline rock;International Journal of Fracture,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3