Effect of thickness on optoelectronic properties of ITO thin films

Author:

Mazur Michał,Pastuszek Roman,Wojcieszak Damian,Kaczmarek Danuta,Domaradzki Jarosław,Obstarczyk Agata,Lubanska Aneta

Abstract

Purpose Indium tin oxide (ITO) is a material belonging to the group of transparent conductive oxides, which are widely used in many fields of technology including optoelectronics and photovoltaics. However, the properties of ITO thin films depend on many factors. Therefore, the aim of the study was thorough investigation of the properties of sputtered ITO thin films of various thicknesses. Design/methodology/approach ITO coatings were deposited by magnetron sputtering in pure argon atmosphere using ceramic ITO target. Various deposition times resulted in obtaining thin films with different thickness, which had significant influence on the optoelectronic properties of deposited coatings. In this work the results of investigation of structural, surface, optical and electrical properties were presented. Findings Increase of the coating thickness caused change of the microstructure from amorphous to nanocrystalline and occurrence of grains with a size of 40 to 60 nm on their surface. Moreover, the fundamental absorption edge was red-shifted, whereas the average transmission in the visible wavelength range remained similar. Increase of the thickness caused considerable decrease of the sheet resistance and resistivity. It was found that even thin films with a thickness of 10 nm had antistatic properties. Originality/value The novelty and originality of presented work consists in, among other, determination of antistatic properties of ITO thin films with various sheet resistances that are in the range typical for dielectric and semiconducting material. To date, there are no reports on such investigations in the literature. Reported findings might be very helpful in the case of, for example, construction of transparent antireflective and antistatic multilayers.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference52 articles.

1. User Manual for JCI-Graph,2007

2. User Manual: JCI 176 Charge Measuring Sample Support,2008

3. User Manual: JCI 155v5 Charge Decay Test Unit,2009

4. Corona charging of practical materials for charge decay measurements;Journal of Electrostatics,1996

5. An alternative approach for charge decay measurement to assess the suitability of materials;Journal of Electrostatics,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3