Tactile sensing for surgical and collaborative robots and robotic grippers

Author:

Bogue Robert

Abstract

Purpose This paper aims to illustrate the increasingly important role played by tactile sensing in robotics by considering three specific fields of application. Design/methodology/approach Following a short introduction, this paper first provides details of tactile sensing principles, technologies, products and research. The following sections consider tactile sensing applications in robotic surgery, collaborative robots and robotic grippers. Finally, brief conclusions are drawn. Findings Tactile sensors are the topic of an extensive and technologically diverse research effort, with sensing skins attracting particular attention. Many products are now available commercially. New generations of surgical robots are emerging which use tactile sensing to provide haptic feedback, thereby eliminating the surgeon’s total reliance on visual control. Many collaborative robots use tactile and proximity sensing as key safety mechanisms and some use sensing skins. Some skins can detect both human proximity and physical contact. Sensing skins that can be retrofitted have been developed. Commercial tactile sensors have been incorporated into robotic grippers, notably anthropomorphic types, and allow the handling of delicate objects and those with varying shapes and sizes. Tactile sensing uses will inevitably increase because of the ever-growing numbers of robots interacting with humans. Originality/value This study provides a detailed account of the growing use of tactile sensing in robotics in three key areas of application.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference12 articles.

1. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery;Journal of Biomedical Optics,2017

2. Dahiya and Valle (2008), available at: www.intechopen.com/books/sensors-focus-on-tactile-force-and-stress-sensors/tactile_sensing_for_robotic_applications

3. Modular instrument for a Haptically-Enabled robotic surgical system (HeroSurg);IEEE Access,2018

4. An example of collaborative robot for automotive and general industry applications,2017

5. Enhancing perception with tactile object recognition in adaptive grippers for Huiman-Robot nteraction;Sensors,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3