Abstract
Commonly encountered problems in the manipulation of objects with robotic hands are the contact force control and the setting of approaching motion. Microelectromechanical systems (MEMS) sensors on robots offer several solutions to these problems along with new capabilities. In this review, we analyze tactile, force and/or pressure sensors produced by MEMS technologies including off-the-shelf products such as MEMS barometric sensors. Alone or in conjunction with other sensors, MEMS platforms are considered very promising for robots to detect the contact forces, slippage and the distance to the objects for effective dexterous manipulation. We briefly reviewed several sensing mechanisms and principles, such as capacitive, resistive, piezoresistive and triboelectric, combined with new flexible materials technologies including polymers processing and MEMS-embedded textiles for flexible and snake robots. We demonstrated that without taking up extra space and at the same time remaining lightweight, several MEMS sensors can be integrated into robotic hands to simulate human fingers, gripping, hardness and stiffness sensations. MEMS have high potential of enabling new generation microactuators, microsensors, micro miniature motion-systems (e.g., microrobots) that will be indispensable for health, security, safety and environmental protection.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference234 articles.
1. Tactile sensing—From humans to humanoids;IEEE Trans. Robot.,2009
2. Human tactile perception as a standard for artificial tactile sensing—A review;Int. J. Med. Robot. Comput. Assist. Surg.,2004
3. Factors influencing the force control during precision grip;Exp. Brain Res.,1984
4. Artificial sense of slip—A review;IEEE Sens. J.,2013
5. Extracting object properties through haptic exploration;Acta Psychol.,1993
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献