Embedded carbon nanotube thread piezoresistive strain sensor performance

Author:

Schulz Mark,Song Yi,Hehr Adam,Shanov Vesselin

Abstract

Purpose – Carbon nanotube (CNT) thread ' s piezoresisitive strain sensing properties of gauge factor, linearity, hysteresis, consistency, temperature stability, and bandwidth were evaluated. This evaluation was motivated by little information in literature combined with the need to understand these properties for commercial use. The paper aims to discuss these issues. Design/methodology/approach – The study here analyzes as-spun CNT thread built into unidirectional glass fiber composites and mounted onto aluminium beams with epoxy to evaluate strain sensing properties. The analyses utilize known sensor parameter definitions to quantify sensor performance. Findings – CNT thread can provide reliable and robust strain measurements for composite and metallic structures. The strain sensor performance meets or exceeds other strain sensors in performance. Research limitations/implications – CNT thread ' s piezoresistive effect is not well understood in terms of Poisson ' s ratio and nanotube contact. More research needs to be carried out to better understand this relationship and optimize the sensor thread. Practical implications – CNT thread can be utilized as a robust strain sensor for composite and metallic structures. It can also be built into composite materials for embedded strain and damage monitoring. By monitoring composite materials with the sensor thread, reliability will significantly increase. In turn, this will lower safety factors and revolutionize inspection methods for composite materials. Originality/value – This paper is the first to comprehensively evaluate key strain sensing properties of CNT thread. With all this strain sensor information in one spot, this should help expedite the use of this technology in other research and industry.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3