A Three-Dimensional Strain Rosette Sensor Based on Graphene Composite with Piezoresistive Effect

Author:

Wu Zhiqiang1ORCID,Wei Jun1,Dong Rongzhen1,Chen Hao2

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. China Construction Second Engineering Bureau Co. Ltd, Beijing 100071, China

Abstract

Obtaining the internal stress and strain state of concrete to evaluate the safety and reliability of structures is the important purpose of concrete structural health monitoring. In this paper, a three-dimensional (3D) strain rosette sensor was designed and fabricated using graphene-based piezoresistive composite to measure the strains in concrete structures. The piezoresistive composite was prepared using reduced graphene oxide (RGO) as conductive filler, cellulose nanofiber (CNF) as dispersant and structural skeleton, and waterborne epoxy (WEP) as polymer matrix. The mechanical, electrical, and electromechanical properties of RGO-CNF/WEP composite were tested. The results show that the tensile strength, elastic modulus, and conductivity of the composite are greatly improved by the addition of RGO and CNF. The relative resistance change of composite films demonstrates high sensitivity to mechanical strain with gauge factors of 16-52. Within 4% strain, the piezoresistive properties of composites are stable with good linearity and repeatability. The sensing performance of the 3D strain rosette was tested. The measured strains are close to the actual strains of measure point in concrete, and the error is small. The RGO-CNF/WEP composite has excellent mechanical and piezoresistive properties, which enable the 3D strain rosette to be used as embedded sensor to measure the internal strain of concrete structures accurately.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3