Abstract
PurposeIn response to these shortcomings, this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approachThe existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate. The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle, and cannot meet the requirements of real traffic scene applications.FindingsFirst, based on the geometric features of dynamic obstacles, the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking; second, the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle, and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition. Finally, the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/valueThe paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors. The accuracy and effectiveness of the proposed method are verified by real vehicle tests.
Reference30 articles.
1. Reliability and test effort analysis of multi-sensor driver assistance systems;Journal of Systems Architecture,2018
2. A large-scale mapping method based on deep neural networks applied to self-driving car localization,2020
3. A method of multiple dynamic objects identification and localization based on laser and RFID;Sensors,2020
4. Ruggedized and improved mems-based sensors for rolling stock;International Journal of Comadem,2019
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献