Unmanned vehicle dynamic obstacle detection, tracking and recognition method based on laser sensor

Author:

Zhang Hualei,Ikbal Mohammad AsifORCID

Abstract

PurposeIn response to these shortcomings, this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approachThe existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate. The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle, and cannot meet the requirements of real traffic scene applications.FindingsFirst, based on the geometric features of dynamic obstacles, the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking; second, the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle, and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition. Finally, the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/valueThe paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors. The accuracy and effectiveness of the proposed method are verified by real vehicle tests.

Publisher

Emerald

Subject

General Computer Science

Reference30 articles.

1. Reliability and test effort analysis of multi-sensor driver assistance systems;Journal of Systems Architecture,2018

2. A large-scale mapping method based on deep neural networks applied to self-driving car localization,2020

3. A method of multiple dynamic objects identification and localization based on laser and RFID;Sensors,2020

4. Ruggedized and improved mems-based sensors for rolling stock;International Journal of Comadem,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3