Research on key technologies of multi-task-oriented live maintenance robots for Ultra High Voltage multi-split transmission lines

Author:

Jiang Wei,Zou Dehua,Zhou Xiao,Zuo Gan,Ye Gao Cheng,Li Hong Jun

Abstract

Purpose The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot is an important equipment to ensure the reliable operation of high voltage lines and is a useful exploration to realize high-quality power transmission. As the robot system platform equipment mature and operation environment gradually become more complex, the double arm coordination motion control in extreme environment becomes one of the main bottleneck for its practical in power system. Design/methodology/approach This paper summarizes the key technologies related to power cable robots, and aims at key technical indicators such as operation reliability, operation efficiency and operation quality in the robot’s practical process. The dynamic evolution mechanism of the robot’s mechanical configuration, the multi-physics information fusion algorithm in extreme environments, the robot’s autonomous positioning and its error compensation control, the robot’s robust motion control in extreme environments and the dual-arm force-position hybrid coordination control and the dynamic distribution and elimination mechanism of internal forces in the closed chain between robots and operating objects, all the research methods and solutions of the key technologies are proposed, respectively. Findings Finally, a new control architecture for power cable robots in the background of the Ubiquitous Power Internet of Things is proposed so as to manage the operation and maintenance of electric power systems. The above key technologies are a new exploration of the operation and maintenance management of EHV (Extra High Voltage) multi-split transmission lines which have laid a solid theoretical foundation for the power cable robot. Originality/value High voltage transmission line is the main channel of power transmission. It is an important means to improve the integration of operation and maintenance management of power system to use robot instead of manual inspection and maintenance of power line, in the promotion and application of electric robot. The authors pay attention to the practicability, and the breakthrough of key technologies of robot is the premise of the practicability of robot. In this paper, the robot operation and control in multi-task and complex scenes are studied. The research and implementation of the main key technologies, such as the dynamic evolution mechanism of robot configuration, the coupling and fusion law of multi physical fields in the extreme electric power environment, the autonomous positioning control of manipulator, the robust control of robot in the super electromagnetic field environment and the cooperative operation control of multi manipulator, are discussed.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference28 articles.

1. Design of automated hotline maintenance robot using haptic technology;International Journal of Scientific and Research Publications,2014

2. Multi-robot cyber physical system for sensing environmental variables of transmission line;Sensors,2018

3. Robot delay-tolerant sensor network for overhead transmission line monitoring;Appl. Sci,2018

4. Visual search, identification and localization method of live working robots for bolted power transmission lines;Journal of Electronic Measurement and Instrument,2017

5. Live maintenance robot for high-voltage transmission lines;Industrial Robot: The International Journal of Robotics Research and Application,2019

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3