Author:
Wang Cheng,Xie Haibo,Yang Huayong
Abstract
Purpose
This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.
Design/methodology/approach
When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.
Findings
Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.
Research limitations/implications
Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.
Originality/value
Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference24 articles.
1. FABRIK: a fast, iterative solver for the inverse kinematics problem;Graphical Models,2011
2. Snake arm robots;Industrial Robot: An International Journal,2002
3. Snaking around in a nuclear jungle;Industrial Robot: An International Journal,2013
4. An obstacle avoidance algorithm for hyper-redundant manipulators,1990
5. A follow-the-leader approach to serpentine robot motion planning;Journal of Aerospace Engineering,1999
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献