Offline programming method and implementation of industrial robot grinding based on VTK

Author:

Hong Lei,Wang Baosheng,Yang XiaoLan,Wang Yuguo,Lin Zhong

Abstract

Purpose The purpose of this paper is to present a robotic off-line programming method for freeform surface grinding based on visualization toolkit (VTK). Nowadays, manual grinding and traditional robot on-line programming are difficult to ensure the surface grinding accuracy, thus off-line programming is gradually used in grinding, however, several problems are needed to be resolved which include: off-programming environment depends on the third-party CAD software, leads to insufficient self-development flexibility; single support for robot type or workpiece model format contributes to lack of versatility; grinding point data depends on external data calculation and import process, causes human-computer interaction deterioration. Design/methodology/approach In this method, the visualization pipeline and observer/command mode of VTK are used to display the 3D model of the robot grinding system and pick up the workpiece surfaces to be grinded respectively. Two groups of cutter planes with equidistant spacing are created to form the grinding nodes on the surface, and the extraction method for the position and posture of the nodes is proposed. Furthermore, the position and posture of discretized points along the grinding curve are obtained by B-spline curve interpolation and quaternion spherical linear interpolation respectively. Finally, the motion simulation is realized by robot inverse kinematics. Findings Through a watch case grinding experiment, the results show that the proposed method based on VTK can achieving high precision grinding effect, which is obviously better than traditional method. Originality/value The proposed method is universal which does not depend on the specific forms of surface, and all calculations in simulation are completed within the system, avoiding tedious external data calculation and import process. The grinding trajectory can be generated only by the mouse picking operation without relying on the other third-party CAD software.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference20 articles.

1. Manual guidance for industrial robot programming;Industrial Robot: An International Journal,2015

2. Optimal trajectory planning for robotic manipulators using improved teaching-learning-based optimization algorithm;Industrial Robot: An International Journal,2016

3. Algorithm and application of inverse kinematics for 6-DOF welding robot based on screw theory;Advances in Intelligent Systems Research,2018

4. Intersection calculation method research based on VTK;Modern Manufacturing Engineering,2016

5. Industrial robot path planning for polishing applications,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3