Author:
Li Xu,Fan Yixiao,Yu Haoyang,Zhou Haitao,Feng Haibo,Fu Yili
Abstract
Purpose
The purpose of this paper is to propose a novel jump control method based on Two Mass Spring Damp Inverted Pendulum (TMS-DIP) model, which makes the third generation of hydraulic driven wheel-legged robot prototype (WLR-3P) achieve stable jumping.
Design/methodology/approach
First, according to the configuration of the WLR, a TMS-DIP model is proposed to simplify the dynamic model of the robot. Then the jumping process is divided into four stages: thrust, ascent, descent and compression, and each stage is modeled and solved independently based on TMS-DIP model. Through WLR-3P kinematics, the trajectory of the upper and lower centroids of the TMS-DIP model can be mapped to the joint space of the robot. The corresponding control strategies are proposed for jumping height, landing buffer, jumping attitude and robotic balance, so as to realize the stable jump control of the WLR.
Findings
The TMS-DIP model proposed in this paper can simplify the WLR dynamic model and provide a simple and effective tool for the jumping trajectory planning of the robot. The proposed approach is suitable for hydraulic WLR jumping control. The performance of the proposed wheel-legged jump method was verified by experiments on WLR-3P.
Originality/value
This work provides an effective model (TMS-DIP) for the jump control of WLR-3P. The results showed that the number of landing shock (twice) and the pitch angle fluctuation range (0.44 rad) of center of mass of the jump control method based on TMS-DIP model are smaller than those based on spring-loaded inverted pendulum model. Therefore, the TMS-DIP model makes the jumping process of WLR more stable and gentler.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference28 articles.
1. Walking-wheeling dual mode strategy for humanoid robot, DRC-HUBO+,2016
2. Similarity in multilegged locomotion: bouncing like a monopode,1993
3. The bow leg hopping robot,1998
4. Control design for a bionic kangaroo;Control Engineering Practice,2015
5. Handle (2017), “Handle - the wheel-legged robot 2017”, [online], available at: www.bostondynamics.com/handle.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献