Kinematic investigation and fatigue life analysis of angular contact ball bearing in wide speed range based on raceway friction

Author:

Liu Yue

Abstract

Purpose The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory. Design/methodology/approach The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation. Findings A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found. Research limitations/implications The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified. Practical implications This paper provides guidance for applying angular contact ball bearing, especially at a high speed. Originality/value This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference14 articles.

1. Accurate bearing remaining useful life prediction based on weibull distribution and artificial neural network;Mechanical Systems and Signal Processing,2015

2. Influence of preload on fatigue life of high-speed angular contact ball bearing;Journal of Lanzhou University of Technology,2015

3. Raceway control assumption and the determination of rolling element attitude angle;Chinese Journal of Mechanical Engineering,2001

4. Analysis of dynamic stiffness characteristics of double-row angular contact ball bearings;Acta Armamentarii,2015

5. Tribological performance prediction of aircraft turbine main shaft ball bearings;Tribology Transactions,1998

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3