A numerical study of fatigue life in high-speed angular contact ball bearings with thermal and centrifugal expansion

Author:

Zhang Chang,Tian Jiyin,Guo Dan

Abstract

Purpose Fix-position preloading, centrifugal force and higher temperatures cause the bearing units in angular contact ball bearings to expand, changing the contact load and affecting bearing life. This study aims to examine the effect of thermal and centrifugal expansion on the fatigue life of fix-position preloaded angular contact ball bearings in high-speed operating conditions. Design/methodology/approach The contact loads on the inner and outer bearing rings were resolved according to the thermal and centrifugal expansion factors in the quasi-static position preloading model. The pressure and frictional stress distribution were used to calculate the subsurface stress in the contact area, while the Zaretsky model was used to determine the relative fatigue life of the inner and outer bearing rings. Findings Under fix-position bearing preloading, thermal and centrifugal expansion significantly affected the contact load and relative fatigue life. At the same axial preload, the inner ring contact load was higher than the outer ring contact load, with a maximum difference of 132.3%. The decrease in the inner ring relative life exceeded the outer ring contact load, with a maximum difference of 7.5%, compared to the absence of thermal and centrifugal expansion. Originality/value This study revealed the influence of thermal and centrifugal expansion on the fatigue life of angular contact ball bearings in high-speed service conditions. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0065/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3