Coupling effects of the impact factors in micro-scale on the performance of aerostatic guideway

Author:

Chen Dongju,Dong Lihua,Pan Ri,Fan Jinwei,Cheng Qiang

Abstract

Purpose The purpose of this study is to investigate the coupling effects of the velocity slip, rarefaction effect and effective viscosity of the gas film on the performance of the aerostatic guideway in micro-scale and improve the analysis precision of the static performance of aerostatic guideway. Design/methodology/approach The corresponding model of the gas film flow with consideration of the velocity slip, rarefaction effect and effective viscosity of the gas film in micro-scale is proposed. By solving the corresponding model, the bearing capacity and the stiffness of the aerostatic guideway are obtained through the pressure distributions of the air cavity. Through comparing the bearing capacity and the stiffness in different situations, the couple effects of the three factors are analyzed. Finally, the experimental results about the stiffness are obtained and the contrast between the simulation stiffness and the tested stiffness is achieved. Findings Through comparing the coupling effects of the micro scale factors under different conditions on the performance of the aerostatic guideway, it was found that when comparing the effects of a single factor, the effect of the first-order slip is the largest. When two factors are randomly combined, velocity slip and viscosity of the gas film is the largest, but these coupling effects are less than the effect of considering three factors simultaneously. Originality/value It is essential to consider the first-order velocity slip, the flow factor Q and the effective viscosity when analyzing the static performance of the aerostatic guideway in micro-scale. This makes studying the performance of the aerostatic guideway in micro-scale feasible and improves the machine’s accuracy.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference19 articles.

1. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings;Transactions of the ASME. Ser. D,1959

2. Analytical modeling of ultra-thin-film bearings;Journal of Micromechanics and Microengineering,2003

3. Gas flow in micro-channels using a boundary-layer approach;International Journal of Computer Applications in Technology,2000

4. Gas damping of electrostatically excited resonators;Sensors and Actuators A Physical,1997

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3