Experimental Study of See-Saw Mode Nano-Vibration on Orifice-Type Restrictors

Author:

Shen XiaoyanORCID,Yu Jing,Yin Jianlong,Li Dongsheng

Abstract

Slide stability is key to the aerostatic guide in ultra-precise machines; thus, it has garnered plenty of attention. Macro-scale studies are commonplace, but micro- and nano-vibration issues require more attention. Microscope vibration is mainly caused by tiny changes in the fluid parameters of lubricating gas film, which is complex and has no verdict. In this case, slide-gas interaction should be considered. In this study, the widely used orifice-type restrictor was investigated for its nano-vibration performance. A Comsol finite-element-method fluid–structure interaction model was used to simulate and analyze an orifice-type restrictor, and orifice-restrictor vibration characteristics at the nanometer scale were inspected using a high-performance laser vibrometer. The results demonstrate that see-saw mode vibrations occur in the restrictors, growing stronger with increased air-supply pressure. The see-saw vibration’s axis is speculatively determined based on orifice and restrictor structures, and the vibration type is related to the number of orifices. The results also show that the vibration is random with natural frequencies at the kilohertz level. The newly provided research results are beneficial for better understanding the nano-vibrations of orifice-type restrictors.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Foundation

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3