Tribological characterizations of bio-polymer based ecofriendly copper-free brake friction composites

Author:

G. Sathyamoorthy,R. Vijay,D. Lenin Singaravelu

Abstract

Purpose This study aims to discuss the impact of using bio-polymer (kraft lignin) in the formulation of passenger vehicle disc brake pads (as a substitute for cashew nutshell liquid [CNSL]-based friction dust) and investigate the characteristics of the pads. Design/methodology/approach Within the scope of this investigation, three different brake pads were generated by altering the biopolymer-lignin content in conjunction with the friction dust from CNSL without modifying the other components. The brake pads were created in accordance with industry-standard practices. Industrial standards were used to evaluate the newly created brake pad’s thermal, physical and mechanical qualities. The tribological properties of the materials were determined using a full-scale inertia brake dynamometer. The scanning electron microscope examined the worn surfaces in conjunction with elemental mapping. Findings The test findings suggest that the brake pads filled with biopolymer-lignin and CNSL-based friction dust (as a partial replacement 50%) exhibited excellent thermal, physical, mechanical characteristics, as well as steady friction and low wear rate. Originality/value A bio-polymer (kraft lignin) in friction composites has the potential to produce eco-friendly brake pads and improve the tribological performance of its copper free-composition, which might be used to replace CNSL-based friction dust in friction composites by addressing the issues raised in this work.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference16 articles.

1. Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron dusts;Arabian Journal for Science and Engineering,2018

2. Special grade of graphite in NAO friction materials for possible replacement of copper;Wear,2015

3. Comparative study of different solid lubricants towards friction stability in a non-asbestos disc brake pad;Industrial Lubrication and Tribology,2021

4. Influence of WS2/SnS2 on the tribological performance of copper-free brake pads;Industrial Lubrication and Tribology,2019

5. NAO friction materials with various metal powders: tribological evaluation on full-scale inertia dynamometer;Wear,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3