Comparative study of different solid lubricants towards friction stability in a non-asbestos disc brake pad

Author:

P. Baskara Sethupathi,J. Chandradass

Abstract

Purpose This study aims to compare the influence of different solid lubricants on the friction stability of a non-asbestos disc brake pad. Design/methodology/approach Three brake pads were developed using three lubricants, namely, non-asbestos brake pad with sulfide mix (NASM), non-asbestos brake pad with bismuth sulfide (NABS) and non-asbestos brake pad with molybdenum disulfide (NAMO). Sulfide mix was indigenously developed by physically mixing friction modifiers, alkaline earth chemicals and various metallic sulfides homogeneously dispersed in graphite medium. The physical, chemical, mechanical and thermal properties of brake pads were characterized as per industrial standards. The tribological performances were studied using the Chase testing machine as SAE-J661-2012. The worn surface of the pads was studied using scanning electron microscope to analyze the dominating wear mechanism. Findings NASM was excellent in fade as well as wear resistance. NABS was better from a wear point of view, but fade resistance was moderate despite its higher cost. NAMO fared average in fade and wear despite its excellent dry lubricating properties. NASM was excellent in terms of fade as well as wear resistance. Originality/value Among the selected metal sulfides, the indigenously developed sulfide mix was better than the other two sulfides, which indicates that the synergetic effect of metal sulfides was always preferable to the individual sulfides.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. Influence of WS2/SnS2 on the tribological performance of copper-free brake pads;Industrial Lubrication and Tribology,2019

2. Effect of zirconium silicate and mullite with three different particle sizes on tribo performance in a non-asbestos brake pad,2021

3. Comparative study of disc brake pads sold in Indian market – impact on safety and environmental aspects;Environmental Technology & Innovation,2020

4. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials;Wear,2006

5. Particle size effects of tin sulfides in disc brake pads;SAE Technical Paper,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3