Customer segment transition through the customer loyalty program

Author:

Kimura MakotoORCID

Abstract

PurposeThis study presents the applicability of a model-based approach for loyalty program forecasting using smartphone app in the digital strategy of the retail industry.Design/methodology/approachThe authors develop a dynamic model with the cyclical structure of customer segments through customer experience. They use time-series data on the number of members of the loyalty program, “Seven Mile Program” and confirm the validity of the approximate calculation of customer segment share, customer segment sales share and aggregate sales performance. The authors present three medium-term forecast scenarios after the launch of a smartphone payment service linked with the loyalty program.FindingsThe sum of the two customer segment shares for forecasting (the sum of the quasi-excellent and excellent customer ratios) is about 30% in each scenario, consistent with an essential customer loyalty (true loyalty) share obtained in the existing empirical study.Research limitations/implicationsDigital strategy in the retail industry should focus more on estimating and forecasting average amounts of customer segments and the number of aggregated customers through the digitalization on the customer side than on individual customer journeys and responses.Practical implicationsMulti-scenario evaluation through simulation of dynamic models from a systemic view can be used for decision-making in retailing digital strategies.Originality/valueThis study builds a model that integrates the cyclicality of customer segment transition through customer experiences into a loyalty matrix framework, which is a method that has previously been used in the hospitality industry.

Publisher

Emerald

Reference30 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3