A convergence-guaranteed particle swarm optimization method for mobile robot global path planning

Author:

Tang Biwei,Zhanxia Zhu,Luo Jianjun

Abstract

Purpose Aiming at obtaining a high-quality global path for a mobile robot which works in complex environments, a modified particle swarm optimization (PSO) algorithm, named random-disturbance self-adaptive particle swarm optimization (RDSAPSO), is proposed in this paper. Design/methodology/approach A perturbed global updating mechanism is introduced to the global best position to avoid stagnation in RDSAPSO. Moreover, a new self-adaptive strategy is proposed to fine-tune the three control parameters in RDSAPSO to dynamically adjust the exploration and exploitation capabilities of RDSAPSO. Because the convergence of PSO is paramount and influences the quality of the generated path, this paper also analytically investigates the convergence of RDSAPSO and provides a convergence-guaranteed parameter selection principle for RDSAPSO. Finally, a RDSAPSO-based global path planning (GPP) method is developed, in which the feasibility-based rule is applied to handle the constraint of the problem. Findings In an attempt to validate the proposed method, it is compared against six state-of-the-art evolutionary methods under three different numerical simulations. The simulation results confirm that the proposed method is highly competitive in terms of the path optimality. Moreover, the computation time of the proposed method is comparable with those of the other compared methods. Originality/value Therefore, the proposed method can be considered as a vital alternative in the field of GPP.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference35 articles.

1. A rank based particle swarm optimization algorithm with dynamic adaptation;Journal of Computational and Applied Mathematics,2011

2. A locally convergent rotationally invariant particle swarm optimization algorithm;Swarm Intelligence,2014

3. Novel inertia weight strategies for particle swarm optimization;Memetic Computing,2013

4. Particle swarm optimization with an aging leader and challengers;IEEE Transactions on Evolutionary Computation,2013

5. Clerc, M. (2012), “Standard particle swarm optimisation”, available at: https://hal.archives-ouvertes.fr/hal-00764996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3