Research on Obstacle Avoidance Planning for UUV Based on A3C Algorithm

Author:

Wang Hongjian1ORCID,Gao Wei1,Wang Zhao1ORCID,Zhang Kai1ORCID,Ren Jingfei1,Deng Lihui12,He Shanshan1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Tianjin Navigation and Instrument Institute, Tianjin 300130, China

Abstract

Deep reinforcement learning is an artificial intelligence technology that combines deep learning and reinforcement learning and has been widely applied in multiple fields. As a type of deep reinforcement learning algorithm, the A3C (Asynchronous Advantage Actor-Critic) algorithm can effectively utilize computer resources and improve training efficiency by synchronously training Actor-Critic in multiple threads. Inspired by the excellent performance of the A3C algorithm, this paper uses the A3C algorithm to solve the UUV (Unmanned Underwater Vehicle) collision avoidance planning problem in unknown environments. This collision avoidance planning algorithm can have the ability to plan in real-time while ensuring a shorter path length, and the output action space can meet the kinematic constraints of UUVs. In response to the problem of UUV collision avoidance planning, this paper designs the state space, action space, and reward function. The simulation results show that the A3C collision avoidance planning algorithm can guide a UUV to avoid obstacles and reach the preset target point. The path planned by this algorithm meets the heading constraints of the UUV, and the planning time is short, which can meet the requirements of real-time planning.

Funder

National Science and Technology Innovation Special Zone Project

National Key Laboratory of Underwater Robot Technology Fund

a special program to guide high-level scientific research

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3