A novel quadrotor carrying payload concept via PID with Feedforward terms

Author:

Yazdannik SamanORCID,Sanisales ShamimORCID,Tayefi MortezaORCID

Abstract

PurposeThis paper introduces control strategy to enhance the performance of a novel quadrotor unmanned aerial vehicle designed for medical payload delivery. The aim is to achieve precise control and stability when carrying and releasing payloads, which alter the quadrotor’s mass and inertia characteristics.Design/methodology/approachThe equations of motion specific to the payload-carrying quadrotor are derived. A feedforward-proportional-integral-derivative (FF-PID) control strategy is then proposed to address the dynamic changes during payload release. The PID components use propeller speed/orientation information for stability. FF terms based on derivatives of desired position/orientation variables enable adaptation to real-time mass fluctuations.FindingsExtensive simulations, encompassing various fault scenarios, substantiate the effectiveness of the FF-PID approach. Notably, our findings demonstrate superior performance in maintaining altitude precision and stability during critical phases such as takeoff, payload release and landing. Graphical representations of thrust and mass dynamics distinctly illustrate the payload release event. In contrast to the linear quadratic regulator (LQR) and conventional PID control, which encountered difficulties during the payload release process, our approach proves its robustness and reliability.Research limitations/implicationsThis study, primarily based on simulations, demands validation through real-world testing in diverse conditions. Uncertainties in dynamic parameters, external factors and the applicability of the proposed approach to other quadrotor configurations require further investigation. Additionally, this research focuses on controlled payload release, leaving unexplored the challenges posed by unforeseen scenarios or disturbances. Hence, adaptability and fault tolerance necessitate further exploration. While our work presents a promising approach, practical implementation, adaptability and resilience to unexpected events are vital considerations for future research in the field of autonomous aerial medical deliveries.Practical implicationsThe proposed control strategy promises enhanced efficiency, reliability and adaptability for autonomous aerial medical deliveries in critical scenarios.Social implicationsThe innovative control strategy introduced in this study holds the potential to significantly impact society by enhancing the reliability and adaptability of autonomous aerial medical deliveries. This could lead to faster and more efficient delivery of life-saving supplies to remote or disaster-affected areas, ultimately saving lives and reducing suffering. Moreover, the technology’s adaptability may have broader applications in fields like disaster relief, search and rescue missions, and industrial cargo transport. However, its successful integration into society will require careful regulation, privacy safeguards and ethical considerations to ensure responsible and safe deployment while addressing potential concerns related to noise pollution and privacy intrusion.Originality/valueWhile PID control of quadrotors is extensively studied, payload release dynamics have been overlooked. This research studies integration of FF control to enable PID adaptation for a novel payload delivery application.

Publisher

Emerald

Reference22 articles.

1. An efficient model predictive control scheme for an unmanned quadrotor helicopter;Journal of Intelligent and Robotic Systems,2013

2. UAV-assisted wireless localization for search and rescue;IEEE Systems Journal,2021

3. Sliding mode control based on backstepping approach for a UAV type-quadrotor;World Academy of Science, Engineering, and Technology,2007

4. Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes,2007

5. Modeling and PD control of a quadrotor VTOL vehicle;IEEE Intelligent Vehicles Symposium,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3