Author:
He Xiao-Hua,Shi Hui-Ji,Norfolk Mark
Abstract
Purpose
The purpose of this paper is to investigate the influence of key parameters on the bond strength and failure modes of laminated structures made of different aluminum alloys (i.e. Al 2024 and Al 7075) via the ultrasonic consolidation (UC) process.
Design/methodology/approach
The UC is used to fabricate laminated structures with various parameters. The push-pin tests were performed on the specimens of different materials and parameters, and the force and displacement were recorded during the tests. The peak punch force was used to represent the bond quality of the laminated structure, and the curves of force versus displacement were used to study the failure modes of the structures.
Findings
It is found that the lower normal force, the larger vibration amplitude and the lower travel speed can result in stronger bonding. Three different failure modes are observed in the tests, due to the different relations between the toughness of interface and raw materials. The process parameters have influence on the interface toughness of a laminated structure, which further leads to different failure modes.
Originality/value
The overall mechanical properties of a laminated structure highly depend on the bond quality between laminated layers. The push-pin test can easily and effectively evaluate the bond quality of the laminated structure. This paper not only focuses on the bond strength evaluation, but also analyzes the different failure modes of laminated structures made of different aluminum alloys, which can give an opportunity to optimize the parameters for different materials.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献