Study on Embedding and Integration of Microsensors Into Metal Structures for Manufacturing Applications

Author:

Cheng Xudong1,Datta Arindom1,Choi Hongseok1,Zhang Xugang1,Li Xiaochun1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706

Abstract

Real time monitoring, diagnosis, and control of numerous manufacturing processes is of critical importance in reducing operation costs, improving product quality, and shortening response time. Current sensors used in manufacturing are normally unable to provide measurements with desired spatial and temporal resolution at critical locations in metal tooling structures that operate in hostile environments (e.g., elevated temperatures and severe strains). Microsensors are expected to offer tremendous benefits for real time sensing in manufacturing processes. Rapid tooling, a layered manufacturing process, could allow microsensors to be placed at any critical location in metal tooling structures. However, a viable approach is needed to effectively integrate microsensors into metal structures during the process. In this study, a novel batch production of metal embedded microsensor units was realized by transferring thin-film sensors from silicon wafers directly into nickel substrates through standard microfabrication and electroplating techniques. Ultrasonic metal welding (USMW) was studied to obtain optimized process parameters and then used to integrate nickel embedded thin-film thermocouple (TFTC) units into copper workpieces. The embedded TFTCs successfully survived the welding tests, validating that USMW is a viable method to integrate microsensors to metallic tool materials. Moreover, the embedded microsensors were also able to measure the transient temperature in situ at 50μm directly beneath the welding interface during welding. The transient temperatures measured by the metal embedded TFTCs provide strong evidence that the heat generation is not critical for weld formation during USMW. Metal embedded microsensors yield great potential to improve fundamental understanding of numerous manufacturing processes by providing in situ sensing data with high spatial and temporal resolution at critical locations.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3