Author:
Kandi Rudranarayan,Pandey Pulak Mohan,Majood Misba,Mohanty Sujata
Abstract
Purpose
This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing.
Design/methodology/approach
The manufacturing approach involved extrusion of polymeric ink over a rotating predefined pattern to construct customized tubular structure of polycaprolactone (PCL) and polyurethane (PU). Dimensional deviation in thickness of scaffolds were calculated for various layer thicknesses of 3D printing. Physical and chemical properties of scaffolds were investigated by scanning electron microscope (SEM), contact angle measurement, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). Mechanical characterizations were performed, and the results were compared to the reported properties of human native trachea from previous reports. Additionally, in vitro cytotoxicity of the fabricated scaffolds was studied in terms of cell proliferation, cell adhesion and hemagglutination assay.
Findings
The developed fabrication route was flexible and accurate by printing customized tubular scaffolds of various scales. Physiochemical results showed good miscibility of PCL/PU blend, and decrease in crystalline nature of blend with the addition of PU. Preliminary mechanical assessments illustrated comparable mechanical properties with the native human trachea. Longitudinal compression test reported outstanding strength and flexibility to maintain an unobstructed lumen, necessary for the patency. Furthermore, the scaffolds were found to be biocompatible to promote cell adhesion and proliferation from the in vitro cytotoxicity results.
Practical implications
The attempt can potentially meet the demand for flexible tubular scaffolds that ease the concerns such as availability of suitable organ donors.
Originality/value
3D printing over accurate predefined templates to fabricate customized grafts gives novelty to the present method. Various customized scaffolds were compared with conventional cylindrical scaffold in terms of flexibility.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献