A comparison of industrial robots interface: force guidance system and teach pendant operation

Author:

Rodamilans Guilherme Boulhosa,Villani Emília,Trabasso Luís Gonzaga,Oliveira Wesley Rodrigues de,Suterio Ricardo

Abstract

Purpose This paper aims to propose an evaluation method to compare two different Human–Robot Interaction (HRI) solutions that can be used for on-line programming in an industrial context: a force guidance system and the traditional teach pendant operation. Design/methodology/approach The method defines three evaluation criteria (agility, accuracy and learning) and describes an experimental approach based on the analysis of variance to verify the performance of guidance systems according to these criteria. This method is used in this paper to compare the traditional teach pendant interface with an implementation of a force guidance system based on the use of an external force/torque sensor. Findings The application of the proposed method to an off-the-shelf industrial robot shows that the force guidance system has a better performance according to the agility criterion. Both solutions have a similar performance for the accuracy criterion, with a limit of about 2 mm in the achieved position accuracy. Regarding the learning criterion, the authors cannot affirm that any of the methods has an improved agility when the operator repeats the tasks. Practical implications This work supports the selection of guidance systems to be used in on-line programming of industrial applications. It shows that the force guidance system is an option potentially faster than the teach pendant when the required positioning accuracy is greater than 2 mm. Originality/value The new method proposed in this paper can be applied to a large range of robots, not being limited to commercial available collaborative robots. Furthermore, the method is appropriate to accomplish further investigations in HRI not only to compare programming methods but also to evaluate guidance systems approaches or robot control systems.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference26 articles.

1. Solving peg-in-hole tasks by human demonstration and exception strategies;Industrial Robot: An International Journal,2014

2. Bascetta, L., Ferretti, G., Magnani, G. and Rocco, P. (2013), Walk-Through Programming for Robotic Manipulators Based on Admitance Control, Robotica, doi: 10.1017/S0263574713000404.

3. Assited gravity compensaiton to cope with the complexity of kinesthetic teaching on redundant robots,2013

4. Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3