Author:
Bascetta Luca,Ferretti Gianni,Magnani Gianantonio,Rocco Paolo
Abstract
SUMMARYThe present paper addresses the issues that should be covered in order to develop walk-through programming techniques (i.e. a manual guidance of the robot) in an industrial scenario. First, an exact formulation of the dynamics of the tool the human should feel when interacting with the robot is presented. Then, the paper discusses a way to implement such dynamics on an industrial robot equipped with an open robot control system and a wrist force/torque sensor, as well as the safety issues related to the walk-through programming. In particular, two strategies that make use of admittance control to constrain the robot motion are presented. One slows down the robot when the velocity of the tool centre point exceeds a specified safety limit, the other one limits the robot workspace by way of virtual safety surfaces. Experimental results on a COMAU Smart Six robot are presented, showing the performance of the walk-through programming system endowed with the two proposed safety strategies.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Reference24 articles.
1. C. Powell , “Case study: Kuntz Electroplating automated wheel polishing system,” Robotics (available at: http://www.robotics.org) (2002).
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献