Semantic text-based image retrieval with multi-modality ontology and DBpedia

Author:

M.K. Yanti Idaya Aspura,Mohd Noah Shahrul Azman

Abstract

Purpose The purpose of this study is to reduce the semantic distance by proposing a model for integrating indexes of textual and visual features via a multi-modality ontology and the use of DBpedia to improve the comprehensiveness of the ontology to enhance semantic retrieval. Design/methodology/approach A multi-modality ontology-based approach was developed to integrate high-level concepts and low-level features, as well as integrate the ontology base with DBpedia to enrich the knowledge resource. A complete ontology model was also developed to represent the domain of sport news, with image caption keywords and image features. Precision and recall were used as metrics to evaluate the effectiveness of the multi-modality approach, and the outputs were compared with those obtained using a single-modality approach (i.e. textual ontology and visual ontology). Findings The results based on ten queries show a superior performance of the multi-modality ontology-based IMR system integrated with DBpedia in retrieving correct images in accordance with user queries. The system achieved 100 per cent precision for six of the queries and greater than 80 per cent precision for the other four queries. The text-based system only achieved 100 per cent precision for one query; all other queries yielded precision rates less than 0.500. Research limitations/implications This study only focused on BBC Sport News collection in the year 2009. Practical implications The paper includes implications for the development of ontology-based retrieval on image collection. Originality value This study demonstrates the strength of using a multi-modality ontology integrated with DBpedia for image retrieval to overcome the deficiencies of text-based and ontology-based systems. The result validates semantic text-based with multi-modality ontology and DBpedia as a useful model to reduce the semantic distance.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference57 articles.

1. Dynamic two-stage image retrieval from large multimedia databases;Information Processing & Management,2013

2. Using semantic contents and WordNet in image retrieval,1997

3. A review of ontology based query expansion;Information Processing and Management: An International Journal,2007

4. Semantically enriching content using opencalais;EDITIA,2009

5. Img(Rummager): An interactive content based image retrieval system,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3