Author:
Zeng Ziming,Sun Shouqiang,Sun Jingjing,Yin Jie,Shen Yueyan
Abstract
Purpose
Dunhuang murals are rich in cultural and artistic value. The purpose of this paper is to construct a novel mobile visual search (MVS) framework for Dunhuang murals, enabling users to efficiently search for similar, relevant and diversified images.
Design/methodology/approach
The convolutional neural network (CNN) model is fine-tuned in the data set of Dunhuang murals. Image features are extracted through the fine-tuned CNN model, and the similarities between different candidate images and the query image are calculated by the dot product. Then, the candidate images are sorted by similarity, and semantic labels are extracted from the most similar image. Ontology semantic distance (OSD) is proposed to match relevant images using semantic labels. Furthermore, the improved DivScore is introduced to diversify search results.
Findings
The results illustrate that the fine-tuned ResNet152 is the best choice to search for similar images at the visual feature level, and OSD is the effective method to search for the relevant images at the semantic level. After re-ranking based on DivScore, the diversification of search results is improved.
Originality/value
This study collects and builds the Dunhuang mural data set and proposes an effective MVS framework for Dunhuang murals to protect and inherit Dunhuang cultural heritage. Similar, relevant and diversified Dunhuang murals are searched to meet different demands.
Subject
Library and Information Sciences,Computer Science Applications
Reference80 articles.
1. KAZE features,2012
2. Large scale distributed neural network training through online distillation,2018
3. Reverse image search for scientific data within and beyond the visible spectrum;Expert Systems with Applications,2018
4. SURF: Speeded up robust features;Computer Vision and Image Understanding,2006
5. The use of MMR, diversity-based reranking for reordering documents and producing summaries,1998
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献