Abstract
Purpose
This study aims to develop a trust mechanism in a Vehicular ad hoc Network (VANET) based on an optimized deep learning for selfish node detection.
Design/methodology/approach
The authors built a deep learning-based optimized trust mechanism that removes malicious content generated by selfish VANET nodes. This deep learning-based optimized trust framework is the combination of the Deep Belief Network-based Red Fox Optimization algorithm. A novel deep learning-based optimized model is developed to identify the type of vehicle in the non-line of sight (nLoS) condition. This authentication scheme satisfies both the security and privacy goals of the VANET environment. The message authenticity and integrity are verified using the vehicle location to determine the trust level. The location is verified via distance and time. It identifies whether the sender is in its actual location based on the time and distance.
Findings
A deep learning-based optimized Trust model is used to detect the obstacles that are present in both the line of sight and nLoS conditions to reduce the accident rate. While compared to the previous methods, the experimental results outperform better prediction results in terms of accuracy, precision, recall, computational cost and communication overhead.
Practical implications
The experiments are conducted using the Network Simulator Version 2 simulator and evaluated using different performance metrics including computational cost, accuracy, precision, recall and communication overhead with simple attack and opinion tampering attack. However, the proposed method provided better prediction results in terms of computational cost, accuracy, precision, recall, and communication overhead than other existing methods, such as K-nearest neighbor and Artificial Neural Network. Hence, the proposed method highly against the simple attack and opinion tampering attacks.
Originality/value
This paper proposed a deep learning-based optimized Trust framework for trust prediction in VANET. A deep learning-based optimized Trust model is used to evaluate both event message senders and event message integrity and accuracy.
Subject
General Computer Science,Theoretical Computer Science
Reference31 articles.
1. Detecting black hole attack using fuzzy trust approach in MANET;International Journal of Innovations in Scientific and Engineering Research (IJISER),2017
2. Towards a distributed ledger based verifiable trusted protocol for VANET,2021
3. Vppcs: vanet-based privacy-preserving communication scheme;IEEE Access,2020
4. Heal nodes specification improvement using modified chef method for group based detection point network;International Journal of Pervasive Computing and Communications,2021
5. Central misbehavior evaluation for vanets based on mobility data plausibility,2012
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献