Complementary projector for null-space stiffness control of redundant assembly robot arm

Author:

Lukic Nikola,Petrovic Petar B.

Abstract

Purpose Stiffness control of redundant robot arm, aimed at using extra degrees of freedom (DoF) to shape the robot tool center point (TCP) elastomechanical behavior to be consistent with the essential requirements needed for a successful part mating process, i.e., to mimic part supporting mechanism with selective quasi-isotropic compliance (Remote Center of Compliance – RCC), with additional properties of inherent flexibility. Design/methodology/approach Theoretical analysis and synthesis of the complementary projector for null-space stiffness control of kinematically redundant robot arm. Practical feasibility of the proposed approach was proven by extensive computer simulations and physical experiments, based on commercially available 7 DoF SIA 10 F Yaskawa articulated robot arm, equipped with the open-architecture control system, system for generating excitation force, dedicated sensory system for displacement measurement and a system for real-time acquisition of sensory data. Findings Simulation experiments demonstrated convergence and stability of the proposed complementary projector. Physical experiments demonstrated that the proposed complementary projector can be implemented on the commercially available anthropomorphic redundant arm upgraded with open-architecture control system and that this projector has the capacity to efficiently affect the task-space TCP stiffness of the robot arm, with a satisfactory degree of consistency with the behavior obtained in the simulation experiments. Originality/value A novel complementary projector was synthesized based on the adopted objective function. Practical verification was conducted using computer simulations and physical experiments. For the needs of physical experiments, an adequate open-architecture control system was developed and upgraded through the implementation of the proposed complementary projector and an adequate system for generating excitation and measuring displacement of the robot TCP. Experiments demonstrated that the proposed complementary projector for null-space stiffness control is capable of producing the task-space TCP stiffness, which can satisfy the essential requirements needed for a successful part-mating process, thus allowing the redundant robot arm to mimic the RCC supporting mechanism behavior in a programmable manner.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference43 articles.

1. On the role of robot configuration in Cartesian stiffness control,2015

2. Soft robotics: what Cartesian stiffness can we obtain with passively compliant, uncoupled joints?,2004

3. An inverse kinematic architecture enforcing an arbitrary number of strict priority levels;The Visual Computer,2004

4. Programming and control of kinematically redundant manipulators,1984

5. High-precision assembly automation based on robot compliance;The International Journal of Advanced Manufacturing Technology,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Geometric Approach to Task-Specific Cartesian Stiffness Shaping;Journal of Intelligent & Robotic Systems;2024-01-17

2. Online Cartesian Compliance Shaping of Redundant Robots in Assembly Tasks;Machines;2022-12-28

3. Development of Macro-Micro Robot with a Compliant End Effector for Putty Applying;2020 IEEE International Conference on Real-time Computing and Robotics (RCAR);2020-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3