Axiomatic design for lean autonomous maintenance system: an application from textile industry

Author:

Kose Yildiz,Muftuoglu Suleyman,Cevikcan Emre,Durmusoglu Mehmet Bulent

Abstract

Purpose Autonomous maintenance (AM), one of the pillars of total productive maintenance (TPM), aims to achieve performance toward zero defects and zero breakdowns. AM system equipped with comprehensive lean tools provides continuous improvement during the AM activities. Despite its long duration, establishing a lean AM system with a robust guideline would provide significant benefits such as high quality and short lead time. Therefore, AM design approach should be provided in a holistic and detailed manner. This study aims to develop a framework for AM design, including preliminary, reactive, preventive and proactive steps using the axiomatic design (AD). Design/methodology/approach Requirements and technical parameters of the AM system are explored with AD. An extensive literature review and a real-life application are presented. Findings The proposed design was validated by adapting the proposed roadmap to a textile manufacturing system in Turkey. The application results justify the established AM system design with an average downtime improvement of 69.2% and the average elapsed time between two failures improvement of 65.1% for apparel department. Originality/value This study has the novelty of establishing an overall AM system design with all of its stages stepwise. It presents a comprehensive guideline in terms of integration of lean philosophy into AM design by generating maintenance-related use cases for lean tools. The developed approach facilitates creating and analyzing complex systems to improve maintenance implementations while reducing nonvalue-added operations.

Publisher

Emerald

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3