The evaluation of friction and wear performances of commercial automotive brake friction polymer composites

Author:

M. Kanagaraj,S. Babu,Jegan Mohan Sudhan Raj,T.V. Christy

Abstract

Purpose This study aims to compare the friction and wear performance of commercial brake pads for four wheelers among metallic, semimetallic and non-asbestos organic (NAO) formulations to identify one with the right combination of properties for optimal performance. Design/methodology/approach Three commercially available brake pads for four-wheeler automotive applications were acquired. Samples were cut from the brake pads to study their physical and mechanical properties. The effects of friction and wear were analyzed using a pin-on-disk tribotester. Surface morphology on the worn-out surface of the brake pads was studied. Findings It was observed that the frictional properties remained stable and less fluctuating in the semimetallic and NAO pads, whereas the coefficient of friction of all the pads varied between 0.35 and 0.55. The wear rate of the metallic pads is less than that of NAO and semimetallic pads. The surface morphology studies revealed that the metallic pads contained more primary plateaus and smaller amounts of secondary plateaus compared to semimetallic and NAO pads, resulting in better wear resistance characteristics. Originality/value Because the market is flooded with various options for brake pad materials, it is imperative that the vehicle manufacturers choose the right pad material with great care not only to ensure the optimal functioning of the braking system but also passenger safety. Mechanical and tribological properties of brake pads contribute greatly to their effectiveness. There is a requirement to choose the proper material for a certain application that has a consistent friction coefficient and reduced wear.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. Special grade of graphite in NAO friction materials for possible replacement of copper;Wear,2015

2. Review of automotive brake friction materials;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2005

3. Role of Al2O3 in semi-metallic friction materials and its effects on friction and wear performance;Tribology Transactions,2008

4. Influence of ground granulated blast furnace slag on the tribological characteristics of automotive brake friction materials;Industrial Lubrication and Tribology,2022

5. Study on tribological properties of palm kernel fiber for brake pad applications;Materials Research Express,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3