Research and development of honeycomb door of full-side open boxcar and its simulation and vibration test

Author:

Zhou XiaokunORCID,Xie Suming,He Maosheng,Fu Tingting,Yu Qifeng

Abstract

PurposeThis study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.Design/methodology/approachBased on traditional aluminium alloy doors, a new type of honeycomb composite material was developed. Tests were conducted to determine the honeycomb compression resistance, honeycomb and skin shear performance, plate bending, thermal conductivity and environmental protection. Eight doors were developed based on the full-side open structure, and static strength and stiffness analyses were performed simultaneously. To solve door vibration problems, modal analysis and test were carried out.FindingsThe test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The first–sixth-order test mode of the door was increased by more than 14% compared with existing aluminium alloy doors.Originality/valueA new type of honeycomb composite material was used in this study. The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The 1st-to-6th order test mode of the door was increased by more than 14% compared with the existing aluminium alloy door.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference25 articles.

1. Experimental investigation on the bending and buckling behavior of bio-based core innovative sandwich panels;International Journal of Structural Integrity,2020

2. The rate-dependence of flexural shear fatigue and uniaxial compression of carbon- and aramid-fibre composites and hybrids;Composites Science and Technology,1992

3. Current status of high performance composite materials in the field of mass transit;Hi-Tech Fiber and Application,2020

4. Advanced composite materials and aerospace engineering;Journal of Composite Materials,2007

5. In plane compressive response and crushing of foam filled aluminum honeycombs;Journal of Composite Materials,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3