Affiliation:
1. Railway Engineering School, Iran University of Science and Technology, Tehran, Iran
2. Department of Electronics Engineering, Chemistry and Industrial Engineering, University of Messina, Messina, Italy
Abstract
In this paper, the influence of foam filling of aluminum honeycomb core on its in-plane crushing properties is investigated. An aluminum honeycomb core and a polyurethane foam with densities of 65, 90, and 145 kg/m3 were used to produce foam filled honeycomb panels, and then experimental quasi-static compression tests were performed. Moreover, finite element model, based on the conducted tests, was developed. In the finite element analyses, three different polyurethane foams were used to fill three different honeycomb cores. The effects of foam filling of aluminum honeycomb core on its in-plane mechanical properties (such as mean crushing strength, absorbed energy, and specific absorbed energy) were analyzed experimentally and numerically. The results showed that the foam filling of honeycomb core can increase the in plane crushing strength up to 208 times, and its specific absorbed energy up to 20 times. However, it was found that the effect of foam filling decreases in heavier honeycombs, producing an increment of the above mentioned properties only up to 36 and 6 times, respectively.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献