Author:
Hermime Tassadit,Seghir Abdelghani,Gabi Smail
Abstract
Purpose
The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.
Design/methodology/approach
Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.
Findings
The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.
Originality/value
The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.
Reference44 articles.
1. Damage index for reinforced concrete columns;Journal of the Croatian Association of Civil Engineers,2020
2. Damage index evaluation of concrete gravity dam based on hysteresis behavior and stiffness degradation under cyclic loading;International Journal of Structural Stability and Dynamics,2017
3. Seismic damage assessment of reinforced concrete grain silos;International Journal of Structural Stability and Dynamics,2021
4. Soil-structure interaction modelling in performance based seismic jetty design,2013