Author:
Mohammed Hardi M.,Abdul Zrar Kh.,Rashid Tarik A.,Alsadoon Abeer,Bacanin Nebojsa
Abstract
Purpose
This paper aims at studying meta-heuristic algorithms. One of the common meta-heuristic optimization algorithms is called grey wolf optimization (GWO). The key aim is to enhance the limitations of the wolves’ searching process of attacking gray wolves.
Design/methodology/approach
The development of meta-heuristic algorithms has increased by researchers to use them extensively in the field of business, science and engineering. In this paper, the K-means clustering algorithm is used to enhance the performance of the original GWO; the new algorithm is called K-means clustering gray wolf optimization (KMGWO).
Findings
Results illustrate the efficiency of KMGWO against to the GWO. To evaluate the performance of the KMGWO, KMGWO applied to solve CEC2019 benchmark test functions.
Originality/value
Results prove that KMGWO is superior to GWO. KMGWO is also compared to cat swarm optimization (CSO), whale optimization algorithm-bat algorithm (WOA-BAT), WOA and GWO so KMGWO achieved the first rank in terms of performance. In addition, the KMGWO is used to solve a classical engineering problem and it is superior.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献