Decision tree classifiers for unmanned aircraft configuration selection

Author:

Dantas de Jesus Ferreira João Antônio,Secco Ney Rafael

Abstract

Purpose This paper aims to investigate the possibility of lowering the time taken during the aircraft design for unmanned aerial vehicles by using machine learning (ML) for the configuration selection phase. In this work, a database of unmanned aircraft is compiled and is proposed that decision tree classifiers (DTC) can understand the relations between mission and operational requirements and the resulting aircraft configuration. Design/methodology/approach This paper presents a ML-based approach to configuration selection of unmanned aircraft. Multiple DTC are built to predict the overall configuration. The classifiers are trained with a database of 118 unmanned aircraft with 57 characteristics, 47 of which are inputs for the classification problem, and 10 are the desired outputs, such as wing configuration or engine type. Findings This paper shows that DTC can be used for the configuration selection of unmanned aircraft with reasonable accuracy, understanding the connections between the different mission requirements and the culminating configuration. The framework is also capable of dealing with incomplete databases, maximizing the available knowledge. Originality/value This paper increases the computational usage for the aircraft design while retaining requirements’ traceability and increasing decision awareness.

Publisher

Emerald

Subject

Aerospace Engineering

Reference18 articles.

1. Aircraft design optimization;Mathematics and Computers in Simulation,2009

2. Aircraft optimization for minimal environmental impact;Journal of Aircraft,2004

3. API design for machine learning software: experiences from the Scikit-learn project,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3