Author:
Guan Ying-Jie,Li Yong-Ping,Zeng Peng
Abstract
Purpose
To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing with a composite ducted rotor, which combines fixed wing and rotary-wing.
Design/methodology/approach
This UAV adopts tiltable ducted rotor combined with fixed wing, which has the characteristics of fast flight speed, large carrying capacity and long endurance. At the same time, it has the hovering and vertical take-off and landing capabilities of the rotary-wing UAV. In addition, aerodynamic simulation analysis of the composite model with a fixed wing and a ducted rotor was carried out, and the aerodynamic influence of the composite model on the UAV was analyzed under different speeds, fixed wing angles of attack and ducted rotor speeds.
Findings
The results were as follows: when the speed of the ducted rotor is 2,500 rpm, CL and K both reach maximum values. But when the speed exceeds 3,000 rpm, the lift will decrease; when the angle of attack of the fixed wing is 10° and the rotational speed of the ducted rotor is about 3,000 rpm, the aerodynamic characteristics of the wing are better.
Originality/value
The novelty of this work comes from a composite wing design of a fixed wing combined with a tiltable ducted rotor applied to the logistics UAVs, and the aerodynamic characteristics of the design wing are analyzed.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献