A new control scheme for an aerodynamic-surface-free tilt-rotor convertible UAV

Author:

Mimouni M.Z.ORCID,Araar O.ORCID,Oudda A.,Haddad M.

Abstract

Abstract This paper is concerned with the design and control of a tilt-rotor UAV (TRUAV), with the purpose of simplifying the mechanical structure and transition handling. Previous works on TRUAVs control consider a different controller for each flight mode. Furthermore, two sets of actuators are used: propellers in the VTOL mode, and aerodynamic surfaces in the fixed-wing mode. In this work, a new design that does not contain any control surfaces is proposed. A new control strategy is also presented to accommodate this particularity. Unlike previous works, this strategy uses a single controller to handle both flight phases, making the transition between the two phases no longer an issue. Furthermore, such a characteristic makes the drone capable of following any flight trajectory, which is vital for applications such as the tracking of a ground target. Simulations, conducted on the full nonlinear model of the famous Zagi flying wing drone, showed the effectiveness of the proposed control strategy in tracking a typical trajectory profile with a smooth transition from VTOL to fixed-wing mode.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference40 articles.

1. Thrust vectoring control of a novel tilt-rotor uav based on backstepping sliding model method;Yu;Sensors,2023

2. [13] Stone, R.H. and Clarke, G. Optimization of transition maneuvers for a tail-sitter unmanned air vehicle (uav), in Australian International Aerospace Congress, vol. 4, 2001.

3. Modeling and Incremental Nonlinear Dynamic Inversion Control of a Novel Unmanned Tiltrotor

4. Transition Optimization for a VTOL Tail-Sitter UAV

5. Control techniques of tilt rotor unmanned aerial vehicle systems: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3