Device-dependent click-through rate estimation in Google organic search results based on clicks and impressions data

Author:

Strzelecki ArturORCID,Miklosik AndrejORCID

Abstract

PurposeThe landscape of search engine usage has evolved since the last known data were used to calculate click-through rate (CTR) values. The objective was to provide a replicable method for accessing data from the Google search engine using programmatic access and calculating CTR values from the retrieved data to show how the CTRs have changed since the last studies were published.Design/methodology/approachIn this study, the authors present the estimated CTR values in organic search results based on actual clicks and impressions data, and establish a protocol for collecting this data using Google programmatic access. For this study, the authors collected data on 416,386 clicks, 31,648,226 impressions and 8,861,416 daily queries.FindingsThe results show that CTRs have decreased from previously reported values in both academic research and industry benchmarks. The estimates indicate that the top-ranked result in Google's organic search results features a CTR of 9.28%, followed by 5.82 and 3.11% for positions two and three, respectively. The authors also demonstrate that CTRs vary across various types of devices. On desktop devices, the CTR decreases steadily with each lower ranking position. On smartphones, the CTR starts high but decreases rapidly, with an unprecedented increase from position 13 onwards. Tablets have the lowest and most variable CTR values.Practical implicationsThe theoretical implications include the generation of a current dataset on search engine results and user behavior, made available to the research community, creation of a unique methodology for generating new datasets and presenting the updated information on CTR trends. The managerial implications include the establishment of the need for businesses to focus on optimizing other forms of Google search results in addition to organic text results, and the possibility of application of this study's methodology to determine CTRs for their own websites.Originality/valueThis study provides a novel method to access real CTR data and estimates current CTRs for top organic Google search results, categorized by device.

Publisher

Emerald

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3