Autonomous omnidirectional mobile robot navigation based on hierarchical fuzzy systems

Author:

Krichen Najla,Masmoudi Mohamed Slim,Derbel Nabil

Abstract

Purpose This paper aims to propose a one-layer Mamdani hierarchical fuzzy system (HFS) to navigate autonomously an omnidirectional mobile robot to a target with a desired angle in unstructured environment. To avoid collision with unknown obstacles, Mamdani limpid hierarchical fuzzy systems (LHFS) are developed based on infrared sensors information and providing the appropriate linear speed controls. Design/methodology/approach The one-layer Mamdani HFS scheme consists of three fuzzy logic units corresponding to each degree of freedom of the holonomic mobile robot. This structure makes it possible to navigate with an optimized number of rules. Mamdani LHFS for obstacle avoidance consists of a number of fuzzy logic units of low dimension connected in a hierarchical structure. Hence, Mamdani LHFS has the advantage of optimizing the number of fuzzy rules compared to a standard fuzzy controller. Based on sensors information inputs of the Mamdani LHFS, appropriate linear speed controls are generated to avoid collision with static obstacles. Findings Simulation results are performed with MATLAB software in interaction with the environment test tool “Robotino Sim.” Experiments have been done on an omnidirectional mobile robot “Robotino.” Simulation results show that the proposed approaches lead to satisfied performances in navigation between static obstacles to reach the target with a desired angle and have the advantage that the total number of fuzzy rules is greatly reduced. Experimental results prove the efficiency and the validity of the proposed approaches for the navigation problem and obstacle avoidance collisions. Originality/value By comparing simulation results of the proposed Mamdani HFS to another navigational controller, it was found that it provides better results in terms of path length in the same environment. Moreover, it has the advantage that the number of fuzzy rules is greatly reduced compared to a standard Mamdani fuzzy controller. The use of Mamdani LHFS in obstacle avoidance greatly reduces the number of involved fuzzy rules and overcomes the complexity of high dimensionality of the infrared sensors data information.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference22 articles.

1. Application of sustainability principles for harsh environment exploration by autonomous robot;Sustainability,2019

2. A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning;IEEE Transactions on Systems, Man and Cybernetics,1995

3. Hierarchical fuzzy controller for a non holonomic mobile robo,2012

4. High dimensional neurofuzzy systems: overcoming the curse of dimensionality,1995

5. Festo (2012), “Festo didactic”, available at: www.festo-didactic.com

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3