Author:
Ding Youshuang,Xiao Xi,Huang Xuanrui,Sun Jiexiang
Abstract
Purpose
This paper aims to propose a novel system identification and resonance suppression strategy for motor-driven system with high-order flexible manipulator.
Design/methodology/approach
In this paper, first, a unified mathematical model is proposed to describe both the flexible joints and the flexible link system. Then to suppress the resonance brought by the system flexibility, a model based high-order notch filter controller is proposed. To get the true value of the parameters of the high-order flexible manipulator system, a fuzzy-Kalman filter-based two-step system identification algorithm is proposed.
Findings
Compared to the traditional system identification algorithm, the proposed two-step system identification algorithm can accurately identify the unknown parameters of the high order flexible manipulator system with high dynamic response. The performance of the two-step system identification algorithm and the model-based high-order notch filter is verified via simulation and experimental results.
Originality/value
The proposed system identification method can identify the system parameters with both high accuracy and high dynamic response. With the proposed system identification and model-based controller, the positioning accuracy of the flexible manipulator can be greatly improved.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献