Portfolio rebalancing based on a combined method of ensemble machine learning and genetic algorithm

Author:

Faridi Sanaz,Madanchi Zaj MahdiORCID,Daneshvar AmirORCID,Shahverdiani Shadi,Rahnamay Roodposhti Fereydoon

Abstract

Purpose This paper presents a combined method of ensemble learning and genetics to rebalance the corporate portfolio. The primary purpose of this paper is to determine the amount of investment in each of the shares of the listed company and the time of purchase, holding or sale of shares to maximize total return and reduce investment risk. Design/methodology/approach To achieve the goals of the problem, a two-level combined intelligent method, such as a support vector machine, decision tree, network Bayesian, k-nearest neighbors and multilayer perceptron neural network as heterogeneous basic models of ensemble learning in the first level, was applied. Then, the majority vote method (weighted average) in the second stage as the final model of learning was collectively used. Therefore, the data collected from 208 listed companies active in the Tehran stock exchange (http://tsetmc.com) from 2011 to 2015 have been used to teach the data. For testing and analysis, the data of the same companies between 2016 and 2020 have been used. Findings The results showed that the method of combined ensemble learning and genetics has the highest total stock portfolio yield of 114.12%, with a risk of 0.905%. Also, by examining the rate of return on capital, it was observed that the proposed method has the highest average rate of return on investment of 110.64%. As a result, the proposed method leads to higher returns with lower risk than the purchase and maintenance method for fund managers and companies and predicts market trends. Research limitations/implications In the forthcoming research, there were no limitations to obtain research data were easily extracted from the site of Tehran Stock Exchange Technology Management Company and Rahvard Novin software, and simulation was performed in MATLAB software. Practical implications In this paper, using combined machine learning methods, companies’ stock prices are predicted and stock portfolio optimization is optimized. As companies and private organizations are trying to increase their rate of return, so they need a way to predict stock prices based on specific indicators. It turned out that this algorithm has the highest stock portfolio return with reasonable investment risk, and therefore, investors, portfolio managers and market timers can be used this method to optimize the stock portfolio. Social implications The homogeneous and heterogeneous two-level hybrid model presented in the research can be used to predict market trends by market timers and fund managers. Also, adjusting the portfolio with this method has a much higher return than the return on buying and holding, and with controlled risk, it increases the security of investors’ capital, and investors invest their capital in the funds more safely. And will achieve their expected returns. As a result, the psychological security gained from using this method for portfolio arrangement will eventually lead to the growth of the capital market. Originality/value This paper tries to present the best combination of stock portfolios of active companies of the Tehran Stock Exchange by using the two-level combined intelligent method and genetic algorithm.

Publisher

Emerald

Subject

Economics, Econometrics and Finance (miscellaneous),Accounting,Management Information Systems

Reference58 articles.

1. Portfolio preservation during severe market corrections: a market timing enhancement to modern portfolio theory,2014

2. Balancing value and risk within a city’s event portfolio: an explorative study of DMO professionals’ assessments;International Journal of Event and Festival Management,2020

3. Econometric modelling of Canadian long distance calling: a comparison of aggregate time series versus point-to-point panel data approaches;Empirical Economics,2012

4. Evaluating multiple classifiers for stock price direction prediction;Expert Systems with Applications,2015

5. Balancing energy security priorities: portfolio optimization approach to oil imports;Applied Economics,2021

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3