Portfolio constructions in the stock market based on data envelopment analysis and stochastic frontier analysis

Author:

Teplova T. V.1,Sokolova T. V.1,Haniev A. I.1

Affiliation:

1. National Research University “Higher School of Economics” (HSE University)

Abstract

The study compares the results of applying the parametric method of Stochastic Frontier Analysis (SFA) and the non-parametric Bias-corrected Data Envelopment Analysis (DEA) for forming integrated stock selection metrics in portfolios based on diverse financial and non-financial indicators of U.S. issuing companies. The authors implement a novel approach in which “input” and “output” indicators for both stochastic frontier analysis and data envelopment analysis models are pre-selected using regression analysis. Deviations of identified company indicators from median industry values are considered. Significant characteristics in explaining stock returns include board size, proportion of independent directors, board meetings attendance, and among financial and market characteristics — the net debt to EBITDA ratio and past stock returns (momentum-effect). It is demonstrated that portfolios consisting of 20–30 securities, constructed on the authors’ integrated metrics, outperform in terms of returns and risk–return ratio compared to the SP 500 index and an equal-weighted portfolio of all considered stocks. The stability of conclusions is verified through comparison with randomly generated portfolios (Monte Carlo method). The obtained results remain stable for both the pre-Covid-19 pandemic period (2008–2019) and the period including the pandemic and geopolitical tensions from 2020 to 2022. From 2008 to 2019, portfolios created using the data envelopment analysis method were more effective than those based on stochastic frontier analysis models. Conversely, during the period from 2020 to 2022, the latter demonstrated superior performance.

Publisher

The Russian Academy of Sciences

Reference55 articles.

1. Макеева Е. Ю., Попов К. А., Дихтярь А. А., Судакова А. В. (2022). Взаимосвязь характеристик совета директоров с ESG-рейтингами и стоимостью российских компаний // Российский журнал менеджмента. Т. 20. Вып. 4. С. 498–523. [Makeeva E. Yu., Popov K. A., Dikhtyar A. A., Sudakova A. V. (2022). The relationship between board characteristics, ESG ratings, and the value of Russian companies. Russian Management Journal, 20, 4, 498–523 (in Russian).]

2. Study of the Momentum Effect in the Price Dynamics of Highly Liquid Shares on the Russian Securities Market

3. Теплова Т. В., Соколова Т. В. (2017). Непараметрический метод оболочечного анализа для портфельных построений на российском рынке облигаций // Экономика и математические методы. Т. 53. № 3. С. 110–128. [Teplova T. V., Sokolova T. V. (2017). Nonparametric data envelopment analysis method for portfolio construction in the Russian bond market. Economics and Mathematical Methods, 53, 3, 110–128 (in Russian).]

4. Adams R., Ferreira D. (2009). Women in the boardroom and their impact on governance and performance. Journal of Financial Economics, 94, 291–309.

5. Agrawal A., Knoeber C. R. (1996). Firm performance and mechanisms to control agency problems between managers and shareholders. The Journal of Financial and Quantitative Analysis, 31, 3, 377–397.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3