Abstract
PurposeWhile the understanding of customer satisfaction is a key success factor for service enterprises, existing elicitation approaches suffer from several drawbacks such as high manual effort or delayed availability. However, the rise of analytical methods allows for the automatic and instant analysis of encounter data captured during service delivery in order to identify unsatisfied customers.Design/methodology/approachBased on encounter data of 1,584 IT incidents in a real-world service use case, supervised machine learning models to predict unsatisfied customers are trained and evaluated.FindingsWe show that the identification of unsatisfied customers from encounter data is well feasible: via a logistic regression approach, we predict dissatisfied customers already with decent accuracy—a substantial improvement to the current situation of “flying blind”. In addition, we are able to quantify the impacts of key service elements on customer satisfaction.Research limitations/implicationsThe possibility to understand the relationship between encounter data and customer satisfaction will offer ample opportunities to evaluate and expand existing service management theories.Practical implicationsIdentifying dissatisfied customers from encounter data adds a valuable methodology to customer service management. Detecting unsatisfied customers already during the service encounter enables service providers to immediately address service failures, start recovery actions early and, thus, reduce customer attrition. In addition, providers will gain a deeper understanding of the relevant drivers of customer satisfaction informing future new service development.Originality/valueThis article proposes an extendable data-based approach to predict customer satisfaction in an automated, timely and cost-effective way. With increasing data availability, such AI-based approaches will spread quickly and unlock potential to gain important insights for service management.
Subject
Strategy and Management,Tourism, Leisure and Hospitality Management,Business, Management and Accounting (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献