A generalized finite-time analytical approach for the synchronization of chaotic and hyperchaotic systems

Author:

Haris Muhammad,Shafiq Muhammad,Ibrahim Adyda,Misiran Masnita

Abstract

PurposeThe purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.Design/methodology/approachThis article proposes a finite-time controller for the synchronization of hyper(chaotic) systems in a given time. The chaotic systems are perturbed by the model uncertainties and external disturbances. The designed controller achieves finite-time synchronization convergence to the steady-state error without oscillation and elimination of the nonlinear terms from the closed-loop system. The finite-time synchronization convergence reduces the hacking duration and recovers the embedded message in chaotic signals within a given preassigned limited time. The free oscillation convergence keeps the energy consumption low and alleviates failure chances of the actuator. The proposed finite-time controller is a combination of linear and nonlinear parts. The linear part keeps the stability of the closed-loop, the nonlinear part increases the rate of convergence to the origin. A generalized form of analytical stability proof is derived for the synchronization of chaotic and hyper-chaotic systems. The simulation results provide the validation of the accomplish synchronization for the Lu chaotic and hyper-chaotic systems.FindingsThe designed controller not only reduces the time of convergence without oscillation of the trajectories which can run the system for a given time domain.Originality/valueThis work is originally written by the author.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference28 articles.

1. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances;Applied Mathematics and Computation,2012

2. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique;Applied Mathematical Modelling,2011

3. Oscillation free robust adaptive synchronization of chaotic systems with parametric uncertainties;Transactions of the Institute of Measurement and Control,2020

4. A generalized analytical approach for the synchronization of multiple chaotic systems in the finite-time;Arabian Journal for Science and Engineering,2020

5. Global finite-time multi-switching synchronization of externally perturbed chaotic oscillators;Circuits, Systems, and Signal Processing,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3