Oscillation free robust adaptive synchronization of chaotic systems with parametric uncertainties

Author:

Ahmad Israr1ORCID,Shafiq Muhammad2

Affiliation:

1. Department of Mathematics, College of Applied Sciences Nizwa, Oman

2. Department of Electrical and Computer Engineering, Sultan Qaboos University, Oman

Abstract

The complexity of the closed-loop system, short transient response time, and fast synchronization error convergence rates are the three basic parameters that limit hacking in the data encryption and secure the communication systems. This paper addresses the following two challenges: The full-order synchronization (FOS) of two parametrically excited second-order nonlinear pendulum (PENP) chaotic systems with uncertain parameters. The reduced-order synchronization (ROS) between the canonical projection part of an uncertain third-order chaotic Rossler and the uncertain PENP systems. This article designs a new robust adaptive synchronization control (RASC) algorithm to address the above two challenges. The proposed controller achieves the FOS and ROS in a shorter transient time, and the synchronization error signals converge to the origin with faster rates in the presence of bounded unknown state-dependent and time-dependent disturbances. The Lyapunov direct method verifies this convergence behavior. The paper provides parameters updated laws that confirm the convergence of the uncertain parameters to some fixed values. The controller does not cancel the nonlinear terms of the plant; this property of the controller keeps the nonlinear terms in the closed-loop that results in the enhanced complexity of the dynamical system. The proposed RASC strategy is successful in synthesizing oscillation free convergence of the synchronization error signals to the origin for reducing the transient time and guarantees the asymptotic stability at the origin. The simulation results endorse the theoretical findings.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3