Forecasting Islamic securities index using artificial neural networks: performance evaluation of technical indicators

Author:

Aslam FaheemORCID,Mughal Khurrum S.ORCID,Ali Ashiq,Mohmand Yasir Tariq

Abstract

PurposeThe purpose of this study is to develop a precise Islamic securities index forecasting model using artificial neural networks (ANNs).Design/methodology/approachThe data of daily closing prices of KMI-30 index span from Aug-2009 to Oct-2019. The data of 2,520 observations are divided into training and test data sets by using the 80:20 ratio, which corresponds to 2016 and 504 observations, respectively. In total, 25 features are used; however, in model selection step, based on maximum accuracy, top ten indicators are selected from several iterations of predictive models.FindingsThe results of feature selection show that top five influencing indicators on Islamic index include Bollinger Bands, Williams Accumulation Distribution, Aroon Oscillator, Directional Movement and Forecast Oscillator while Mesa Sine Wave is the least important. The findings show that the model captures much of the trend and some of the undulations of the original series.Practical implicationsThe findings of this study may have important implications for investment and risk management by using index-based products.Originality/valueNumerous studies proved that traditional econometric techniques face significant challenges in out-of-sample predictability due to model uncertainty and parameter instability. Recent studies show an upsurge of interest in machine learning algorithms to improve the prediction accuracy.

Publisher

Emerald

Subject

General Environmental Science

Reference71 articles.

1. Forecasting stock market series with ARIMA Model;Journal of Statistical and Econometric Methods,2014

2. Neural network based unified particle swarm optimization for prediction of asphaltene precipitation;Fluid Phase Equilibria,2012

3. Evolving smart approach for determination dew point pressure through condensate gas reservoirs;Fuel,2014

4. A neural network approach for credit risk evaluation;The Quarterly Review of Economics and Finance,2008

5. A hybrid EMD-MA for forecasting stock market index;Italian Journal of Pure and Applied Mathematics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3