Deep learning with small and big data of symmetric volatility information for predicting daily accuracy improvement of JKII prices

Author:

Ledhem Mohammed AyoubORCID

Abstract

PurposeThe purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information.Design/methodology/approachThis paper uses the nonlinear autoregressive exogenous (NARX) neural network as the optimal DL approach for predicting daily accuracy improvement through small and big data of symmetric volatility information of the JKII based on the criteria of the highest accuracy score of testing and training. To train the neural network, this paper employs the three DL techniques, namely Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG).FindingsThe experimental results show that the optimal DL technique for predicting daily accuracy improvement of the JKII prices is the LM training algorithm based on using small data which provide superior prediction accuracy to big data of symmetric volatility information. The LM technique develops the optimal network solution for the prediction process with 24 neurons in the hidden layer across a delay parameter equal to 20, which affords the best predicting accuracy based on the criteria of mean squared error (MSE) and correlation coefficient.Practical implicationsThis research would fill a literature gap by offering new operative techniques of DL to predict daily accuracy improvement and reduce the trading risk for the JKII prices based on symmetric volatility information.Originality/valueThis research is the first that predicts the daily accuracy improvement for JKII prices using DL with symmetric volatility information.

Publisher

Emerald

Subject

General Materials Science

Reference52 articles.

1. The relative risk performance of Islamic finance: a new guide to less risky investments;International Journal of Theoretical and Applied Finance,2007

2. Performance of Syariah and composite indices: evidence from Bursa Malaysia;Asian Academy of Management Journal of Accounting and Finance,2008

3. Stable stock market prediction using NARX algorithm,2018

4. Forecasting Islamic securities index using artificial neural networks: performance evaluation of technical indicators;Journal of Economic and Administrative Sciences,2020

5. Neural network toolbox;User’s Guide, MathWorks,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3